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Abstract—Historical advancements in lower-limb prostheses 
have reflected the challenges of diverse anthropomorphic 
biomechanics, limiting intelligent control systems from being 
implemented and reflecting true user intent. With recent 
advancements in machine learning (ML), however, this notion is 
being challenged. In transfemoral-powered prostheses, time 
series information has been used to infer context (slope angle and 
walking speed) and intent (ambulation mode) and scale torque 
assistance accordingly in real time. In this study, we build off this 
work by proposing and validating a real-time framework for 
adaptive walking speed context estimation. Our system makes 
use of the general similarity in human gait patterns and iterates 
subject-independent ML models used for prediction towards 
subject-dependent models by method of batched retrospective 
labeling and retraining. Offline validation for walking speed 
estimation has been completed using seven amputee subjects’ 
data, showing an average subject-independent MAE of 0.063 
being reduced to 0.043 m/s, a 31.7% improvement. In addition, 
we discuss and present preliminary results for walking speed 
estimation and several alternative methods of retrospective 
labeling. 

Index Terms – Lower-limb prosthetics, biomechanics, machine 
learning, context estimation, intent recognition.  

I. INTRODUCTION 
With over 2 million limb amputees in the U.S. alone – a 

number growing by approx. 185,000 a year – the need for 
prostheses that enable the continuation of day-to-day activity 
is clear [1]. Often, however, powered lower limb prostheses 
necessary to enable this behavior lack sufficient control 
systems to distinguish them from those of passive systems, 
which often struggle to simulate natural gait patterns and 
improve user ambulation. [2]. In recent years, developments in 
embedded and control system design have begun to change 
this. Microprocessors that imitate the walking patterns of users 
can now incorporate real-time high-level processing of sensor 
data, which are located on powered knee-ankle prostheses [3], 
[4]. These powered prosthetic devices address the asymmetries 
that can result in gait in a person with an amputation using 
passive systems [5]. Additionally, powered prosthesis devices 
offer an array of other benefits such as decreased hip work and 
power generation from the affected limb, decreased metabolic 
expenditure, improved user satisfaction with walking speed 
and distance, and decreased frequency of falls when using a 
powered prosthetic device [6]. With the goal of restoring intent 
recognition to the amputee in and out of clinical settings, we 
consider signals from kinematic and mechanical, rather than 
neural-interfacing, sensors. This is due to the high level of 
unreliability – especially over time – that electromyography 
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(EMG) sensors exhibit from surface shifting, sweat 
interference, etc. as well as high inter-subject variability [7], 
[8], whereas kinematic and mechanical sensors allow for better 
tracking accuracy and information transmission that enable 
more better subject-invariant measurements [8].  

In this study, we use inertial measurement units (IMUs), 
loadcell, and encoder data to indirectly predict mode 
classification, walking speed, and slope angle regression [10], 
[11], [12]. This process, called forward prediction, is a key 
feature of our proposed system, and many techniques, 
including numerical methods such as integration techniques 
and machine learning algorithms like convolutional neural 
networks (CNN) [13] and XGBoost models [14], [15], have 
been used to develop effective forward predictors. The 
forward predictor's speed estimates are used to calculate torque 
scaling coefficients to modify the behavior of the knee and 
ankle joints on the prosthesis [16]. Torque scaling is essential 
for natural motion of the subject’s gait due to changing 
biomechanics with walking speed [17]. Although past studies 
have successfully identified user intent for classifying 
locomotion modes [13], [15], we focus specifically on user 
walking speed estimation and have chosen to develop a novel 
CNN-based forward predictor for real-time processing rather 
than computationally expensive feature extraction [15]. This 
choice allows us to explore deep networks and their fit within 
our proposed adaptation pipeline. 

Using static forward predictors alone, reasonably low error 
rates are attainable. However, it is unlikely that these error 
rates will improve over time or across different individuals. 
Therefore, the models can be considered subject-independent, 
which naturally leads to our proposed system design. This 
contrasts with a subject-dependent model which are trained 
exclusively using data from subject they are intended for [18]; 
however, in our framework, the predictors tend towards a 
subject-semi-dependent model, utilizing both general 
knowledge of human gait patterns and continuous integration 
of subject-specific data. 

 Similar to [19], we approach the problem by using a 
periodic retraining cycle of the forward predictors using labels 
that are retrospectively assigned by slower, yet more accurate 
models (which we will refer to as backwards estimators) that 
look at past gait data to iterate the forward predictors towards 
subject-dependent efficacy. The backwards estimators benefit 
not only from a more lenient computation timeline but also 
from completed raw user stride data. 
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 Previous works have successfully shown the viability of 
an adaptive intent recognition algorithm that can improve as 
the user ambulates by using real-time neural and mechanical 
sensor data to continuously update a forward predictor [19], 
[20]. These works have primarily focused on detecting and 
classifying the user’s ambulation mode through feature-
extracted data fed into ML classifiers. This paper proposes an 
alternate application of the adaptation algorithm that can be 
used specifically for context estimation (i.e., walking speed 
estimation) while using a forward and backward estimator that 
can make regression estimates with raw sensors, eliminating 
the need for a feature extraction process. Overall, we expect 
the adaptive framework to improve the forward predictor’s 
speed estimations by using real-time sensor data from the 
prosthesis to retrain itself and ultimately develop a model that 
is unique to each user. 

II. METHODS 

A. Open Source Leg (OSL) & ROS Communication 
The prosthesis used in this paper was the Open Source Leg 

(OSL) developed by the University of Michigan and 
constructed by The Exoskeleton and Prosthetic Intelligent 
Controls (EPIC) Lab at Georgia Tech [21], [22]. The powered 
knee-ankle prosthesis consists of a six-degree-of-freedom 
(DOF) loadcell, three six-degree IMUs (thigh, shank, and 
foot), two joint encoders, and two actuators, one for each joint. 
A Raspberry Pi 4 was used for computing real-time ML  
context estimation and an external computer was used for  
communication with the Pi and for assistance tuning in real  
time. 

The control architecture for the prosthesis is divided into 
three levels: high, mid, and low. The high-level control is 
responsible for detecting user intent (mode classification) and 
making context estimations (walking speed, slope angle 
regression) using onboard sensor data and pre-trained ML 
models. The mid-level controller consists of a finite state 
machine (FSM) where the transition between ambulation 
modes and between gait phases are managed with the 
movement parameters of the knee and ankle joints. The desired 
joint torques are calculated by 

 t i = - ki (q i - q ei) - bq i' (1) 

where i, qi, and q i’, are the joint in question, angle, and 
angular velocity given by onboard encoders, respectively, k is 
the stiffness, b is the damping coefficient, and qei is the target 
angle specified by the FSM [23]. 

The context estimations from the high-level controller are 
continually preprocessed with a Kalman filter. This is a 
common filter used to infer more accurate estimates of 
unknown variables by recursively estimating the joint 
probability distribution over the variables for each timeframe 
[24]. In this case, it decreases the likelihood of undesired joint 
movements which would be unexpected by the user and cause 
stumbles. The filtered context estimates scale impedance 
parameters that produce desired torque values from (1), which 
are then processed by low-level controllers and passed onto the 
actuators with built-in PID controllers for delivering the 
desired scaled assistance to the leg.  

The method of data communication between different 
concurrently running nodes such as the FSM and forward 

predictors is handled by ROS which broadcasts channels such 
as sensor data, current phase, mode, and ground truth labels 
which are all used by the adaptive pipeline. The adaptation 
then learns the subject-specific gait patterns and progressively 
improves the models used to predict context estimations in real 
time. 

B. Backwards Estimator 
The backwards estimator is a key component of the 

adaptive pipeline that impacts the effectiveness of the overall 
adaptive model. While various methods of backwards 
estimation can be implemented, it is essential to choose the 
method that can reliably produce estimations with errors less 
than that of the forward predictor. Because the backwards 
estimator looks at a larger window of data and the accuracy of 
the estimate is more integral than the speed of estimation, more 
numerical methods are considered alongside ML frameworks. 
The following methods were explored offline in determining 
user walking speed. 

 
TABLE I. TCN ARCHITECTURE AND PARAMETERS 

 

Hyper Parameter 
 

 

Speed Estimator 
 

Kernel Size 10 

# Channels / Hidden Layer  

10 

# Levels 3 

Dropout Probability 0 

Learning Rate 1e-4 
 
i) Temporal Convolutional Network (TCN) 

A deep learning backwards estimator framework that we 
evaluate is a TCN. This model used an architecture and 
hyperparameter tuning procedure identical to that used to 
estimate hip moment in [25]. The selected parameters are 
shown in Table 1. For the scope of this paper, only the speed 
estimator parameters are relevant. 

ii) XGBoost 
Another ML approach to context estimation is through 

XGBoost, a gradient descent algorithm that minimizes its loss 
function by forming and combining the estimations of smaller 
regression trees [16]. Each subsequent tree is used to predict 

Figure 1. OSL sensors, control structure, intent recognition, and context 
estimation. 
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the error of the previous tree with a penalty function to 
prevent overfitting. The feature inputs were manually 
optimized through a feature extraction process that calculates 
128 features found to be relevant to stride dynamics using 
50ms segments of raw data from the 28 sensor channels of the 
OSL. In constructing the model, the standard optimization 
procedure from our previous studies was used [26]-[28]. For 
this study, four separate models for each gait phase (i.e., ES, 
LS, SF, SW) were used. 

iii) IMU 
The user's walking speed can be estimated using simple 

physics-based methods. A foot IMU (RT-BLE-001 r3) from 
Navigation Solutions LLC was used in this study, with data 
collected on a Raspberry Pi Zero for offline analysis. An able-
bodied subject walked on a level treadmill at speeds ranging 
from 0.3 to 0.9 m/s in increments of 0.1 m/s, with the speed 
estimated by calculating the Euclidean distance between 
consecutive heel contact points and dividing by the time 
elapsed. Trials were repeated with the IMU attached to the foot 
of the OSL, and the same subject wearing the OSL to simulate 
a person with transfemoral amputation. 

iv) Filtering 
Due to noise in sensor data, raw context estimation values 

are also very noisy. While ambulation mode is qualitative in 
intent recognition, walking speed and slope angle estimates 
are quantitative and small differences in their values directly 
impact the amount of scaled assistance provided by the 
actuators. As a result, it is important to filter the raw 
estimations to be more accurate and ensure a natural gait. In 
real-time applications, the Kalman filter has been the best fit 
for filtering data from onboard sensors on the OSL to help 
predict the user’s next step, but it is not strictly beneficial 
when used in conjunction with the backwards estimator which 
relies on data that has already been collected. Specifically, 
one major downside of real-time filters is phase lag [29], [30]. 
Regardless of how well the filter performs, the filter cannot 
instantly react to a sudden change in incoming data because it 
requires time for the signal to reach the filter. As a result, a 
zero-phase filtering method, which processes input data both 
in the forward and backwards direction, is used to mitigate 
phase shifts in the signal during filtering. Another method is 
using a Savitzky-Golay filter (Savgol), which finds the best-
fitting low-degree polynomial with a sliding window to 
smoothen out the signal [31]. In the offline analysis, we 
evaluate the performance between these different filtering 
methods. 
C. Forward Predictor 

The forward predictor used in this study was a four-phase 
CNN. Similar to the backwards estimator XGBoost model, 
individual models for each phase were used to reduce any 
error introduced by the sensor characteristic differences seen 
between phases. The overall architecture of the CNN was 
identical between the four phases, with parameters and layers 
optimized through a hyperparameter sweep. The optimized 
model of a single 1-D convolution layer followed by a flatten 
layer, two dense layers, and outputs a single estimation value. 

Each CNN takes in 50ms of data, with 25ms of overlap 
between consecutive windows of data. 
D. Adaptive Pipeline 

As shown in Fig. 2, our approach has both the forward 
predictor and adaptive processes acting in parallel. The raw 
sensor data from the OSL are continuously extracted in 50ms. 
windows and used to produce real-time intent predictions 
which are, in turn, used to scale torque. Upon the completion 
of each three-stride batch, the backwards estimator 
retrospectively processes the completed gait data and 
produces more confident labels for walking speed. Using the 
resulting labels and gait data for the first and third stride in the 
batch, we update the forward predictor models for each phase. 
Using the labels and data associated with the second stride, 
the pipeline compares the error rates of the currently used 
forward predictors with the updated models, iterating the 
operational forward predictors with the superior of the two for 
each category and phase. 

Although evaluated offline, the pipeline is designed to 
function in real-time experiments. As such, the sensor data 
collected is broadcasted as a message on the ROS network at 
100 Hz and processed by a distinct node that alerts the main 
adaptation scripts upon the completion of each stride. The 
adaptive pipeline then proceeds as described above and 
broadcasts the updated forward predictor model parameters to 
a separate node that handles real-time context predictions. 

To integrate the forward predictor and backwards 
estimators into a logical framework, we must consider several 
design choices. First, we chose to use a three-stride-long 
retrospective window so that the update times would be 
relatively short, yet still fit within training time restrictions. 
The organization of data from these windows into train-test-
train sets minimizes the temporal similarity of test sets while 
ensuring that the majority still supplies the training pool. 

There is also the question of how to update the models. We 
chose to do this completely disjointed – every model for mode 
(e.g., Level Walking) and phase (e.g., Early Stance) is 
updated separately – based solely on error rates. This ensures 
that the error will only trend downward for all evaluation 
metrics, rather than requiring universal improvement across 
each mode and phase to meet the criteria for updating. 

Figure 2. Adaptive pipeline schematic showing data flow to backwards 
estimator (evaluated every three strides) and forward predictor (evaluated 

every 50ms.). 
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The adaptation was completed using a stochastic gradient 
descent optimizer with a 1E-3 learning rate, 300 epochs, a 
batch size of 32, and by freezing all convolutional layers. 

E. Offline Analysis 
The subjects each underwent a two-part trial: walking at 

static speeds (0.3 m/s to 0.9 m/s with 0.1 m/s discontinuous 
increments) and dynamic speeds on a treadmill, where the 
dynamic speed profiles followed triangle case and staircase 
profiles (Fig. 3) with the speed being varied over the duration 
of the trial. The subjects averaged 171 strides (STD 21), 
approximately 80% of which were in static speed profiles. We 
used stride data collected from seven transfemoral amputee 
subjects to evaluate the performance of our pipeline. Before 
running the offline analysis, the subject-independent models 
were trained for the forward predictors in a modified fashion. 
Rather than training on the entire set of data, we trained seven 
distinct sets (ES, LS, SF, SE) of models, where set i was 
trained on all data but that of subject i, then evaluated through 
adaptation on subject i. This ensured that we were measuring 
the accuracy in the transition from subject-independent to 
subject-dependent models.  

Additionally, to simulate the error introduced by the IMU-
based backwards estimator (0.03 m/s MAE able-bodied, 0.06 
m/s MAE able-bodied wearing the OSL), we ran a trial 
adapting on ground truth labels with an average of 0.05 m/s 
MAE noise introduced, which was the best error rate of all  
methods studied. 

III. RESULTS 

A. Backwards Estimator 
The backwards estimators were evaluated offline with the 

ML models having a similar offline analysis approach as the 
forward predictor. The filtering methods were evaluated on 
the raw TCN signal as shown in Fig. 4. When comparing the 
ML approaches, the TCN is seen to outperform the Kalman-
filtered XGBoost regression by MAE of 0.019 m/s. When the 
ground truth value makes a step change, there is evident lag 
seen in the Kalman filtered estimates. The zero-phase Kalman 
filter mitigates that signal lag, allowing the estimations to 
track the ground truth labels more accurately. The zero-phase 
Kalman filter performed similarly to the Savgol filter. The 
IMU method’s estimations were significantly better than the 
other methods, with an average MAE of 0.030 m/s across 
trials on an able-bodied subject and 0.060 m/s with the OSL 
on the same subject. Overall, the IMU tested on an able-
bodied subject without the OSL had the lowest average error 
of 0.030 m/s, an 66.7% improvement over the forward 
estimator. 

B. Adaptive Pipeline 
The adaptive pipeline was evaluated on seven different 

subjects, the predictions of two of which are shown in Fig. 5. 
Although tracking the ground truth values more tightly, the 
adapted models seem to exhibit more outlier values, 
especially in the TF1 trial. On average, the MAE was reduced 
from 0.0631 (STD 0.0189) m/s in the subject-independent 
models to 0.0430 (STD 0.0065) m/s after adaptation. 
Additionally, all subject trials proved the adaptation to be 
superior and, as seen in Fig. 6b, the adapted MAE is 
consistently lower than the independent models. The several 
spikes seem to correspond to transitions between static 
walking speeds which could potentially be attributed to poor 
adaptation to irregular stride patterns.  

IV. DISCUSSION 

Results from the backwards estimation models show the 
TCN to be preferable over XGBoost and numerical 
approaches with lower error. To further improve the TCN 

a) 

b) 

Figure 4. (a) Backwards estimator average MAE comparison. MAE = 
[0.101, 0.081, 0.075, 0.073, 0.074, 0.074, 0.060, 0.030], STD = [0.032, 
0.026, 0.024, 0.024, 0.024, 0.024, 0.026, 0.026] m/s. (b) Filtered TCN 

estimations with different filters. The orange line is the ground truth values. 

Figure 3. Dynamic trial treadmill speed profiles. 
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estimations, filtering is necessary. While it was hypothesized 
the zero-phase filter would significantly improve the errors 
due to phase lag, the reduction in error was not substantial. 
Although the estimations are able to react to the instantaneous 
changes in walking speed faster, the majority of the error is 
attributed to noisy peaks in the estimations. A Savgol filter 
was applied on the zero-phase Kalman filter output, which 
smoothened out the prediction, but was not able to remove all 
peaks. To improve this, a larger window of evaluation for the 
Savgol filter can be used. However, while this will smoothen 
the noise further in regions of relatively constant speed, it will 

worsen estimations when the speed varies due to underfitting. 
Future work may investigate other methods of filtering, such 
as an adaptable Savgol filter with a window size that varies 
with the variance in signal data. Overall, the IMU method was 
determined to be the best method. While we only tested on an 
able-bodied subject using the OSL, we expect the 
performance to be similar for a transfemoral subject with the 
OSL. In addition to the lower average MAE, the numerical 
IMU method is computationally less demanding than other 
ML methods and can also produce better estimations with less 
time.  

Figure 5. (a) TF1 and (b) TF5 adaptation predictions. 

a) 

b) 

Figure 6. (a) Subject MAE comparison. (b) TF5 MAE vs. model iteration. 

a) b) 
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As seen in Fig. 7a, by introducing 0.05 MAE to the ground 
truth signal, the adapted MAE decreased to approx. 0.0747 
m/s and the independent MAE to approximately 0.0714. We 
also adapted with a lower learning rate of 1E-5, rather than 
1E-3, and repeated the TF5 noisy trial. This resulted in a 
decrease from 0.0747 to 0.0661 m/s MAE, improving the 
previously superior independent model. Overall, the adapted 
walking speed estimator is able to outperform the original, 
non-adapted model. 

Fig. 6a demonstrates a consistent performance of the 
adapted model across subjects, regardless of the independent 
model's performance. The average MAE improves, and the 
standard deviation decreases by 65.6% from 0.0189 to 0.0065 
m/s, as observed when comparing MAE with and without 
adaptation. While TF1 exhibits significantly higher error 
without adaptation, with adaptation, the MAE reduces to 
levels comparable to the other subjects, indicating the 
pipeline's ability to reliably adapt to the subject over time, 
even when the subject has abnormal gait characteristics. 

However, the pipeline's major weak point is the transition 
between static and dynamic walking speeds, as seen in Fig. 
7b. The adaptive error relative to the independent error rates 
rapidly increases at the beginning of dynamic trials, 
particularly for Early Stance and Swing Extension models. 
This may be due to the models learning to overshoot the 
ground truth, resulting in several outlier data points in Fig. 7a. 
Furthermore, poorer estimation on datapoints (such as .2-.4  
m/s in the beginning of the dynamic trials) is expected. To 
counteract this, one potential approach is to temporarily 
reduce the learning rate used when retraining the forward 
predictor when dynamic data is detected, handicapping the 
model's ability to make drastic changes. 

 To improve computational speed and accuracy, updating 
the running test set could involve randomly selecting a fixed 

number of completed strides from the entire test set and 
evaluating new models with the restricted set. This approach 
also allows for outlier test strides to be removed using a peak 
filter, which reduces the likelihood of models adapting to 
inaccurate backwards estimates. 

V. CONCLUSION 

This study proposes an adaptive framework for walking 
speed estimation that can adapt a user-independent ML model 
to the user. We achieved an average MAE improvement of 
0.02 m/s with a phase-based CNN forward estimator that 
updates itself every three strides using a ground truth speed 
label, over a user-independent CNN estimator that does not 
adapt with user ambulation, proving that adaptation for 
context estimation is viable. The significant improvement in 
STD also prove that the final adapted model has cross-subject 
reliability, where the model’s performance is consistent 
regardless of the user. The proposed framework could 
potentially be applied to other areas of locomotion outside of 
speed as well, such as mode classification and slope 
estimation, and while the paper used a CNN, the same 
framework can be applied to estimators with different models 
with similar improvements to be expected. Various methods 
of backwards label estimators were explored as well, and 
numerical methods based on IMU data had the lowest average 
MAE error of 0.060 m/s. In the future, the framework should 
be validated in real-time with adaptation performed with 
labels provided by the integrated backwards estimators. 
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a) 

b) 

Figure 7. (a) TF5 adaptation with 0.05 MAE noise introduced. (b) Normalized MAE vs. model iteration. 
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