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Abstract—This study introduces a novel continual learning 

algorithm that incrementally improves the performance of deep-
learning-based walking speed estimators during level-ground 
walking with a powered knee-ankle prosthesis. While user-
dependent (DEP) estimators generally outperform user-
independent (IND) estimators, they require the pre-collection of 
DEP training data. In contrast, our real-time algorithm adapts 
IND estimators to self-labeled DEP data generated during 
walking, eliminating the need for pre-collected datasets. The 
algorithm also features a biomimetic scaling mechanism that 
adjusts prosthetic assistance based on speed estimates. We 
evaluated our algorithm on novel subjects (N=10) with unilateral 
above-knee amputations during treadmill and overground 
walking. For treadmill trials, when adapted with estimated and 
ground truth labels, estimators achieved mean absolute errors 
(MAEs) of 0.074 [0.023] (mean, [standard deviation]) and 0.074 
[0.018] m/s, respectively, reflecting a significant 28% (p < 0.05) 
reduction in MAE compared to non-adapted estimators. For 
overground trials, treadmill-adapted estimators demonstrated a 
significant 18% (p < 0.05) reduction in MAE compared to non-
adapted estimators. Our algorithm significantly reduced speed 
estimation errors within one minute of walking and delivered 
biomimetic assistance (r = 0.91) across speeds. This approach 
allows off-the-shelf powered prostheses to seamlessly adapt to 
new users, delivering biomimetic assistance through precise, real-
time walking speed estimation. 

 
Index Terms—Lower-limb prostheses, Machine learning, 

Continual learning, Adaptive algorithms, Locomotion 
 

I. INTRODUCTION 
NDIVIDUALS with unilateral lower-limb amputations 
compensate for limb loss by increasing net joint moments 
and powers on their intact limb, compared to able-bodied 

individuals [1]. Asymmetries between affected and intact 
limbs are exacerbated across different walking speeds [2], [3]. 
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These compensatory behaviors may lead to secondary 
complications, such as increased energy expenditure [4], 
osteoarthritis, and back pain [5]. These effects can be 
mitigated with proper prosthetic fit, alignment, and device 
selection [5]. Specifically, devices such as semi-active and 
powered prostheses  can help reduce compensatory behaviors 
and their associated complications by electronically 
modulating assistance to closely mimic able-bodied 
kinematics and kinetics across speeds [6]. 

The C-LEG (C-LEG, Otto Bock), a semi-active, 
electronically controlled knee prosthesis, is programmed to 
vary assistance (i.e., hydraulic resistance) based on estimated 
cadence – a measure closely linked to speed. Across speeds, 
improvements in lower-limb joint kinetics [7] and step length 
symmetry [8]  were achieved with the C-LEG compared to a 
passive knee prosthesis. A comparison between a 
mechanically controlled hydraulic knee prosthesis (3CI, Otto 
Bock) and the C-LEG showed that the speed-adaptive control 
of the C-LEG reduced metabolic expenditure at slow and 
medium speeds [9]. These findings highlight the significance 
of providing speed-adaptive assistance at varying speeds and 
emphasize the need for precise speed estimation. 

Implementing speed-adaptive control in powered prostheses 
[10], [11], [12], [13] holds immense potential for benefit, as 
these devices can produce both propulsive and resistive 
assistance at the knee and ankle with electric actuation that 
meet the biomechanical needs of users at different speeds. 
Powered prosthesis control, typically dictated by position [11], 
[14], torque [15], or impedance [16], [17], can be defined by 
able-bodied biomechanics [14], [15] or manual tuning by 
experimenters [16], [17] to adjust the magnitude and timing of 
assistance. Prosthesis control can be applied discretely or 
continuously. Discrete control strategies divide the gait cycle 
into discrete states and define state-specific (e.g., speed-
specific) behavior using finite-state machines [16], [18], [19]. 
Continuous control strategies can involve tracking user 
progression through the gait cycle (e.g., phase variable 
estimation) [20], estimating walking speed, and applying 
control trajectories that are modeled from able-bodied 
variable-speed data [14], [15] or optimized trajectories [21]. 
Alternatively, continuous control can be driven by volitional 
movements (i.e., intact limb movement) that do not require 
speed information [11], [22], [23], [24], [25], [26]. Adaptive 
Central Pattern Generators (i.e., adaptive oscillators) are often 
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used in lower-limb exoskeleton control to modulate the 
frequency of assistance across speeds [27], [28] but require 
additional modification to deliver the speed-appropriate 
magnitude of assistance [29]. In this study, powered prosthesis 
control was implemented using an impedance-based finite-
state machine which continuously scaled impedance 
parameters based on estimated speed – enabling biomimetic 
behavior that can be manually tuned to user preference. This 
approach was selected over continuous adaptive oscillators, 
model-based methods, and volitional approaches because it 
provides a simpler, more easily interpretable, and 
computationally efficient framework that can adapt to varying 
speeds without the complexity of real-time nonlinear 
dynamics, the need for extensive pre-trained models, or 
reliance on potentially inconsistent user-driven volitional 
inputs. 

Numerous methodologies have been explored for speed 
estimation. These approaches can be broadly categorized into 
direct integration [34], [35], [36], kinematic modeling [31], 
[33], [35], [37], and machine learning methods [32], [38], 
[39]. Those evaluated on individuals wearing a lower-limb 
prosthesis are listed in Table 1. Direct integration methods 
integrate foot [34] or shank [35] inertial measurement unit 
(IMU) linear accelerations into positional displacements that 
are tracked between mid-stance gait events. Speed is 
computed by dividing positional displacement by elapsed 
time. Drift error caused by signal integration is mitigated 
using zero velocity updates during mid-stance. Kinematic 
modeling methods make use of an inverted pendulum model 
and known limb lengths to track the progression of the user 
through space. Direct integration and kinematic modeling 
methods have achieved errors as low as 0.036 m/s root mean 
squared error (RMSE) for able-bodied individuals [33] and 
0.09 m/s RMSE for individuals with transfemoral amputation 
[31]. While accurate, direct integration and traditional 
kinematic methods are limited to one speed estimate per gait 
cycle which is too slow to track immediate changes in speed. 
Phase-based kinematic methods are more continuous, but still 
require user-dependent (DEP) limb length information [33]. 

Machine learning methods offer a continuous and completely 
user-independent (IND) solution. IND solutions are preferred 
over DEP solutions because they can be applied out-of-the-
box without any external intervention. Machine learning 
methods use pre-trained regression models to make continuous 
estimates of speed with real-time sensor data. In offline 
analyses, IND models (i.e., models trained on non-target 
subject data and evaluated on target subject data) and DEP 
(i.e., models trained and evaluated on target subject data) 
models achieved offline errors of 0.070 and 0.067 m/s RMSE 
(when evaluated on dynamic speeds), respectively [32]. 
Similar disparities in IND and DEP performance have been 
observed in mode classification [40], slope estimation, and 
stair height estimation [41]. Given that the accuracy of 
machine-learning-based speed estimation is significantly 
challenged by intersubject variability, it is important to train 
models with DEP data to match or exceed the performance of 
direct integration and kinematic modeling methods. However, 
DEP data collection is time-consuming, often requiring 
several hours or days in a clinical setting to collect sufficient 
data. Furthermore, the need for repeated sessions for fine-
tuning, as walking patterns evolve over time, renders DEP 
data collection impractical for many individuals. Therefore, a 
solution is pertinent that neither compromises model 
performance nor requires users to undergo impractical in-
person data collections prior to use. 

A promising solution to this data problem is the adoption of 
a continual learning strategy that adapts an IND model with 
self-labeled DEP data in real-time to improve its performance 
[42], [43]. This strategy was first investigated in lower-limb 
prostheses by Spanias et al., with the aim of continuously 
updating an IND mode classifier (forward classifier) with DEP 
electromyography (EMG) data to improve classification 
accuracy [43]. DEP data was self-labeled using a separate 
classifier referred to as a backward classifier. Over time, the 
system adapted and enabled new EMG data to be used by the 
forward classifier for real-time mode classification. The 
adapted classifier achieved a 6.66% reduction in classification 
error across multiple experimental sessions when compared to 

Table 1. Walking speed estimation reported in literature involving the use of a lower-limb prosthesis. 

Author N 
subjects 

Speed 
range 

Speed 
profile Mode Method Estimation 

rate 
ML model 

type 
Estimation 

error 

Miyazaki [30] 7 TF 0.5 – 1.4 m/s Dynamic Offline Kinematic model ~ 1 Hz - RMSE not 
reported 

Lenzi [15] 3 TF 0.5 – 1.4 m/s Dynamic Real-time Kinematic model ~ 1 Hz - RMSE not 
reported 

Dauriac [31] 9 TF 0.56 – 1.4 m/s Constant Offline Kinematic model ~ 1 Hz - 0.09 RMSE 

Bhakta [32] 6 TF 0.5 – 0.9 m/s Dynamic Offline Machine 
learning 50 Hz 

DEP 0.067 RMSE 

IND 0.070 RMSE 

Best [14] 2 TF 0.8 – 1.2 m/s Dynamic Real-time Kinematic model ~ 2 Hz - 0.10 RMSE 

Liu [33] 6 AB 0.4 – 1.1 m/s Constant Offline Kinematic model 100 Hz - 0.036 RMSE 

This study 10 TF 0.3 – 0.9 m/s Dynamic Real-time Machine 
learning 50 Hz 

Adapted 0.088 RMSE* 
Non-adapted 

(IND) 0.129 RMSE* 

TF: individuals with transfemoral amputation; AB: able-bodied individuals; DEP: user-dependent; IND: user-independent; ML: machine learning; 
RMSE: root mean squared error. 
*Real-time forward estimation errors (recomputed in RMSE) for baseline and P2-DIF forward estimators on Profile 2. 
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Fig. 1. Experimental setup showing a subject with an above-knee amputation 
walking on a variable-speed Bertec instrumented treadmill using a powered 
knee-ankle prosthesis. The prosthesis is equipped with joint encoders, inertial 
measurement units, a 6-DOF load cell, and an Imuwear position tracking 
sensor. The prosthetic control system, powered by an onboard NVIDIA 
Jetson Nano, communicates with an external computer via the Robot 
Operating System (ROS) network. The external computer commands 
treadmill speed profiles and records VICON motion capture data of full-body 
optical markers placed on the subject. A ceiling-mounted body harness 
ensures the subject’s safety during the trial. 

the non-adapted classifier. In a related study, a Feedforward 
Neural Network (FNN) was used as the forward classifier and 
was directly adapted with labels generated by a separate FNN-
based backward classifier which had access to noncausal data 
[42]. The aim of the study was to directly compare the 
performance of adapted forward classifiers, which began as 
IND or DEP, and non-adapted forward classifiers that were 
either IND or DEP. Adapting IND forward classifiers 
achieved errors that were not significantly different than those 
achieved with DEP forward classifiers. This approach is 
beneficial as it enables less-accurate IND classifiers to 
gradually reach performance levels similar to DEP classifiers 
after walking for a period. 

In this paper, we extend continual learning approaches from 
mode classifiers to speed estimators. Our contributions are as 
follows: 

• Developed a novel framework for real-time continual 
learning for walking speed estimation that reduces 
model error over time and eliminates the need for 
collecting offline data from novel subjects. This 
framework can also be expanded to other regression 
tasks. 

• Introduced a binning strategy that prevents 
catastrophic forgetting during adaptation. 

• Designed and optimized a Temporal Convolutional 
Network specifically for accurate walking speed 
estimation. 

• Provided a simple approach to scale prosthetic 

assistance based on estimated walking speed, 
resulting in biomimetic biomechanics. 

 
Building upon the offline results presented in Johnson et 

al. [44], we hypothesize that our pipeline will produce adapted 
forward estimators that yield significantly lower real-time 
estimation errors compared to non-adapted forward estimators 
in treadmill and overground settings. Also, we hypothesize 
that our speed-adaptive control will achieve ankle and knee 
biomechanics that scale similarly (r > 0.8) to able-bodied 
biomechanics. 

II. METHODOLOGY 

A. Participants 
Our study consisted of ten subjects with transfemoral 

amputations (7 males and 3 females) with an average age of 
42.40 [12.70] years, height of 1.69 [0.10] m, and body weight 
of 71.44 [14.46] kg. All participants provided written 
informed consent before they participated in this study. This 
study was approved by the Georgia Institute of Technology 
IRB. A certified prosthetist configured the prosthetic device 
for each subject to ensure appropriate alignment and comfort. 

B. Materials 
The knee-ankle powered prosthesis used in this study was 

the Open-Source Leg (OSL) [10]. Our version of the OSL was 
equipped with one six degree-of-freedom (DOF) load cell 
(Sunrise Instruments M3564F, Nanning, China), two joint 
encoders (AS5047P & AK7452 - DEPHY Actpack, Maynard, 
MA), and a shank IMU (MPU-9250 InvenSense, San Jose, 
CA). We added two six-degree-of-freedom (DOF) Microstrain 
IMUs (3DMCX5-25 LORD Microstrain, Williston, VT) to the 
thigh and foot and a distance tracking sensor, named Imuwear 
(RT-BLE-001 Imuwear, Navigation Solutions LLC, Ann 
Arbor, MI), to the foot. A Raspberry Pi 4 imaged with a 32-bit 
Raspberry Pi OS was mounted on the OSL ankle housing to 
interface with the Imuwear sensor. An NVIDIA Jetson Nano, 
located on the OSL knee housing, interfaced with the 
Microstrain IMUs and Dephy actuators via universal serial 
bus. The Dephy actuators consolidated and communicated 
load cell, encoder, and shank IMU signals to the Jetson Nano. 
The Jetson Nano served as the primary computing platform, 
configured with Ubuntu 20.04 (64-bit), Robot Operating 
System (ROS) Noetic, Python 3.9, and TensorFlow 2.9.1. It 
featured a quad-core ARM Cortex-A57 CPU and a 128-core 
Maxwell GPU, powered by a portable power bank to ensure 
uninterrupted real-time performance. A Dell Latitude 3430 
laptop, equipped with an Intel Core i7-1255U processor and 
Intel Iris Xe Graphics, was used alongside the Jetson Nano for 
signal visualization, control parameter tuning, and adaptation, 
running the same software environment.  

All sensors were sampled at 100 Hz. Forward estimators 
used a total of 28 sensor channels, excluding Imuwear 
channels, to generate speed estimates at 50 Hz. These channels 
included 6 channels per IMU (3-axis accelerometer and 
gyroscope), two channels per encoder (angular position and 
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velocity), and 6 channels for the load cell (3-axis force and 
moment). Motion capture data were collected at 200 Hz using 
a 30-camera Vicon system (Vicon Industries, Inc., Hauppauge, 
NY). The positions of four pelvis VICON markers were 
recorded to track center-of-mass speed, which was used as a 
post-hoc ground truth reference during overground walking 
along a 5-meter path. During treadmill walking, subjects 
walked on a Bertec split-belt treadmill (Bertec, Ohio, USA), 
and treadmill speeds were communicated over ROS at 50 Hz. 

C. Prosthetic Control 
Prosthetic control plays a crucial role in enabling 

individuals with transfemoral amputations to walk naturally 
and adjust to varying speeds. This study presents a novel 
approach to prosthetic control that combines forward 
estimation, backward estimation, and real-time adaptation to 
improve speed estimation performance and deliver biomimetic 
assistance. Forward estimators use causal information from 
sensor data to estimate instantaneous speed in real-time, while 
backward estimators leverage noncausal information to 
provide more accurate speed estimates retrospectively. The 
prosthetic control system adapts forward estimators to an 
individual's walking patterns through periodic re-training with 
data labeled by a backward estimator. Biomimetic assistance 
is achieved through a finite-state machine that dictates gait 
phase transitions and applies joint-specific impedance 
parameters that scale with estimated speed. This 
comprehensive approach aims to provide responsive, 
personalized, and speed-adaptive prosthetic control for 
improved walking performance across various speeds. 

Forward Estimation: A Temporal Convolutional Network 
(TCN) was selected as our forward estimator. TCNs are well-
suited for real-time estimation tasks involving sequential time 
series data, as they can learn feature representations from long 
input sequences without requiring hand-engineered features 
[45]. TCNs have recently shown success in estimating 
biological joint moments in real-time [46], and we have found 
that they outperform more standard deep learning approaches 
such as CNNs and LSTMs for time-sequence biological data.  

An offline dataset of variable-speed walking data, collected 
from eleven individuals with transfemoral amputations using 
the OSL [47], was used to optimize TCN hyperparameters for 
the task of IND speed estimation. Specifically, we optimized 
forward estimators with an 11-fold leave-one-subject-out 
cross-validation approach. The optimization process involved 
tuning hyperparameters such as the number of levels, channels 
per hidden layer, kernel size, dropout probability, and learning 
rate. The final optimized architecture consisted of a 5 kernel 
size, 0.2 dropout probability, 4 levels, 10 channels per hidden 
layer, and a 0.0001 learning rate. The optimized input 
sequence length was 120 samples (1.2 seconds). The output of 
the TCN is generated by a final fully connected linear layer 
followed by a ReLU activation function, which takes the 
features extracted by the convolutional layers and maps them 
to a single continuous value representing the estimated 
walking speed at that specific moment. This set of 
hyperparameters is a unique contribution of this paper which 
can be extended to other applications requiring real-time IND 
speed estimation. 

Six subjects from this study were involved in collecting the 

 
Fig. 2.  Overview of the continual learning walking speed estimation pipeline. A pre-trained, user-independent Temporal Convolutional Network (TCN) model 
was initialized as FE0, representing the first iteration of the forward estimator (FEn). FEn uses the last 1,200 ms of prosthesis sensor data (sampled at 100 Hz) to 
estimate walking speed every 20 ms (50 Hz). These estimates are used to adjust prosthetic assistance by scaling ankle push-off and knee swing. Every third 
stride, a backward estimator generates a speed label for each of the previous three strides by calculating heel-to-heel foot displacement and dividing by the 
elapsed time between heel contacts. The stride data, consisting of 28 sensor channels from joint encoders, inertial measurement units, and a 6-DOF load cell, is 
organized into bins according to the assigned speed labels. The bins function in a first-in-first-out (FIFO) manner and store a maximum of 7 strides of data. The 
binned data is split into training and validation sets, and the model FE0 is retrained using the training data to produce an adapted forward estimator (AFE). The 
AFE is evaluated against FEn on the validation data, and if AFE achieves a lower mean absolute error (MAE), it replaces FEn and increments the iteration (n). A 
test set, collected before adaptation during benchmark trials and labeled with ground truth speed, is used to evaluate all estimators and to report results showing 
the true performance, though this data does not influence adaptation. 
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offline dataset [47]. A unique forward estimator (with 
optimized hyperparameters) was trained for these six subjects 
using a subset of the offline dataset (N=10) that excluded the 
test subject. The complete offline dataset (N=11) was used to 
train the forward estimator used for the four new subjects. 
Each subject’s pre-trained forward estimator is considered 
their baseline forward estimator and denoted as FE0. As the 
system operates, the baseline forward estimator (FE0) is 
periodically adapted to the individual's walking patterns with 
the intention of replacing the forward estimator responsible for 
real-time speed estimation. Adapted versions of FE0 are 
denoted as FEn, where n represents the number of updates the 
forward estimator has undergone since the start of the trial. 
The forward estimator attained at the end of an adaptation trial 
is denoted as FEF. FEn provides real-time speed estimates 
every 20 ms (50 Hz) using the most recent input sequence of 
size 28x120. It takes the estimator 1.42 ± 0.51 ms to generate 
one estimate. Estimates are filtered using a Kalman filter [48] 
with a process noise of 1e-5 and measurement variance of 0.1. 

Backward Estimation: We employed a Direct Integration 
(DI) and Ground Truth (GT) backward estimator to self-label 
stride data. Backward estimators labeled data on a stride-by-
stride basis due to the DI backward estimator, which can only 
provide one speed estimate per stride. Stride segmentation was 
determined using a swing-to-stance body mass threshold of 
approximately 20%, identified at the moment of heel contact. 

The DI backward estimator calculated a single continuous 
speed label for each prosthesis stride by dividing the positional 
displacement between consecutive heel contact events by the 
time elapsed between these events. Prosthesis foot position 
was tracked at 100 Hz using a commercial foot tracking 
system called the Imuwear [49]. The Imuwear fuses integrated 
linear accelerations and rotational velocities to compute foot 
position. Drift is mitigated by assuming a zero-velocity 
moment during midstance. A center-moving-average filter of 
length 5 was used to smooth labels between consecutive 
strides. All data points within a stride were assigned the same 
DI-computed label as IMU integration only allows for one 
prediction per stride. The Imuwear is a very high quality IMU 
and was the best in the field for tracking foot position/distance 
that we were aware of at the time of the study for tracking 
accurate step length estimates. 

The GT backward estimator assigned each data point within 
a stride a continuous ground truth value of speed that was 
closest in timestamp. For trials with treadmill walking, ground 
truth speed was the actual treadmill speed which is streamed 
over the ROS network at 50 Hz. For trials with overground 
walking, ground truth speed was COM speed and was 
computed post-hoc as it could only be determined offline. The 
COM was assumed to be located at the center of the subject’s 
pelvis: the average position between right anterior superior 
iliac spine (RASIS), left anterior superior iliac spine (LASIS), 
right posterior superior iliac spine (RPSIS), and left posterior 
superior iliac spine (LPSIS) VICON marker positions. 

Labeled stride data were organized and assigned to discrete 
bins based on the stride’s average speed label. These bins were 

categorized in increments of 0.1 m/s. For example, the first bin 
contained stride data with an average speed label ranging from 
0.0 to 0.1 m/s, the second bin from 0.1 to 0.2 m/s, and the last 
bin from 1.9 to 2.0 m/s. Each bin was allowed a maximum of 
7 strides, with a first-in-first-out strategy employed to 
maintain only the most recent 7 strides in each bin. This 
binning strategy ensured that forward estimators were adapted 
with multi-speed data, maintaining an even distribution across 
speeds and limiting the computational load of adaptation. By 
preserving the continuous labels of each stride during binning, 
we further ensured that the data remained suitable for accurate 
adaptation across the full range of speeds. This was crucial in 
avoiding overfitting to the most recent speed and preventing 
catastrophic forgetting of other speeds during training, as 
observed in our offline tests during system development. 

Adaptation: Every third prosthesis stride, a copy of the FE0 
underwent a real-time adaptation process during which it was 
re-trained using all available binned stride data labeled by 
either the DI or GT backward estimator (Fig. 2). During this 
adaptation, 80% of the strides in each bin were designated as 
training data, and 20% as validation data. This process 
required a minimum of two strides per bin to ensure at least 
one stride was available for both training and validation. The 
training loop used a learning rate of 0.0001, a batch size of 32, 
an Adam optimizer, a mean squared error loss function, and 2 
epochs; these hyperparameters were selected through offline 
optimization with the offline dataset used to train forward 
estimators. After training, the adapted FE0 (AFE) and the FEn 
were evaluated on the validation dataset. If the adapted AFE 
demonstrated a lower mean absolute error (MAE) compared to 
the FEn, the model weights of the FEn were immediately 
updated to match those of the AFE and n was incremented. On 
average, the real-time adaptation process – including data 
processing, model adaptation, evaluation, and replacement – 
took 0.90 ± 0.36 seconds to complete. 

Biomimetic Assistance: A finite-state machine dictated gait 
phase transitions between early stance (ES), late stance (LS), 
swing flexion (SF), and swing extension (SE) gait phases 
during walking. Similar to [17], joint-specific sets of stiffness 
(𝑘𝑘), damping (𝑏𝑏), and theta equilibrium (𝜃𝜃𝑒𝑒𝑒𝑒) impedance 
parameters were defined for each gait phase. The total number 
of impedance parameters was 24. Joint torque was computed 
with Eq. 1:  

 
 𝜏𝜏𝑖𝑖 = −𝑘𝑘𝑖𝑖 ,𝑠𝑠�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑒𝑒𝑒𝑒,𝑖𝑖,𝑠𝑠� − 𝑏𝑏𝑖𝑖,𝑠𝑠�̇�𝜃𝑖𝑖 (1) 

 
where 𝜏𝜏 is the commanded torque, 𝑖𝑖 is the knee or ankle joint, 
𝑠𝑠 is the gait phase, 𝜃𝜃 is the measured joint angle, and �̇�𝜃 is the 
measured joint angle velocity. Impedance parameters and 
torques were computed every 10 ms (100 Hz). Commanded 
torques were actuated every 1 ms (1000 Hz) with a PID 
current controller. 

Like [17], late stance ankle stiffness (𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝐿𝐿𝐿𝐿) was defined 
as: 

 
 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝐿𝐿𝐿𝐿 = 𝐶𝐶 × 𝑊𝑊(0.237 × 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒  +  0.028) (2) 
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where 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 is the measured ankle angle, W is the subject’s 
body mass (kg), and C is a dimensionless multiplier. Knee 
swing flexion (𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒,𝐿𝐿𝑆𝑆) and extension (𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒,𝐿𝐿𝑆𝑆) stiffness 
were defined as constants. In this study, we wrapped 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝐿𝐿𝐿𝐿, 
𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒,𝐿𝐿𝑆𝑆, and 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝐿𝐿𝑆𝑆  in the following scaling equation: 

 
 𝑘𝑘𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑒𝑒𝑠𝑠,𝑖𝑖,𝑠𝑠 = 𝑘𝑘𝑖𝑖,𝑠𝑠(1 + 𝑎𝑎(𝑣𝑣 − 𝑟𝑟𝑟𝑟𝑟𝑟)) (3) 
 

where 𝑣𝑣 is speed, 𝑎𝑎 is the scaling coefficient, and 𝑟𝑟𝑟𝑟𝑟𝑟 is the 
reference walking speed of 0.5 m/s. Scaling these specific 
parameters provided additional ankle push-off and knee swing 
assistance that enabled the prosthesis to biomimetically adjust 
with changes in speed. 

D. Experimental Protocol 
This study asked subjects to participate in a tuning session, 

treadmill trials, and overground trials. Treadmill trials 
included 2 benchmark trials, 4 adaptation trials, and 6 forward 
estimation trials. Overground trials consisted of one adaptation 
trial and one forward estimation trial. Prosthetic assistance 
was scaled across all trials using Eq. 3. Two distinct treadmill 
speed profiles were used throughout treadmill trials: 

• Profile 1 (P1): Subjects encountered discrete treadmill 
speeds in the following sequence: 0.3, 0.5, 0.7, 0.9, 0.8, 
0.6, 0.4 m/s. Each speed was maintained for 20 seconds 
before transitioning to the next speed at an acceleration 
of 0.1 m/s². The total duration for P1 was 
approximately 140 seconds. 

• Profile 2 (P2): The treadmill speed started at 0.3 m/s, 
accelerated to 0.9 m/s, and then decelerated back to 0.3 
m/s at a rate of 0.015 m/s². The total duration for P2 
was approximately 80 seconds. 

These profiles were selected to evaluate our methods on 
both discrete (P1) and continuously changing (P2) walking 
speed patterns. 

Tuning Session: At the start of the session, the tuning 
process served as an acclimation period for the subjects, 
allowing them to familiarize themselves with the device. 
Notably, all but two subjects had participated in at least one 
OSL study and were already familiar with the device. For all 
users, this session provided essential time to adjust and tune 
the control parameters to their preferences. The tuning 
involved adjusting state machine transitions and impedance 
parameters during treadmill walking. Commonly tuned 
parameters included stance-to-swing body mass threshold (%), 
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒,𝐿𝐿𝐿𝐿 (C), 𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒,𝐿𝐿𝑆𝑆 (constant), and 𝑘𝑘𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒,𝐿𝐿𝑆𝑆  (constant). 
These parameters were tuned at 0.5 m/s. Then, the scaling 
coefficient (a) of each listed stiffness parameter was tuned at 
0.3 and 0.9 m/s. This process was repeated until the subject 
felt properly assisted at 0.3, 0.5, and 0.9 m/s. This tuning 
process took about 15 to 30 minutes to complete. 

Treadmill Benchmark Trials: Two benchmark trials were 
collected to create a test dataset for evaluating the true 
performance of forward estimators during adaptation. For 
Trial 1 and Trial 2, subjects walked on P1 and P2, 

respectively. During these trials, forward estimates were set 
equal to the actual treadmill speeds streamed over ROS, 
ensuring accurate scaling of prosthetic assistance. This 
measure was taken to avoid snowballing disturbances in gait 
that could affect the reliability of subsequent forward 
estimations. This challenge is faced head on in all other trials 
in this study. This test dataset was reserved for post-hoc 
analysis and was not used to inform adaptation decisions. 

Treadmill Adaptation Trials: Four adaptation trials were 
collected to adapt the baseline forward estimator (FE0) to the 
novel subject under different conditions. An adaptation trial 
was collected for each unique combination of profile (P1 or 
P2) and backward estimator (DI or GT). Forward estimation, 
backward estimation, and adaptation processes were run 
asynchronously. 

A trial-specific naming convention was adopted to track the 
evolution of adapted forward estimators. This naming scheme 
incorporated the profile and backward estimator used during 
the adaptation trial. For example, an adaptation trial using P1 
and DI was initialized with a baseline forward estimator 
named P1-DI0 (equivalent to FE0) that evolved as PI-DIn 
through adaptation and concluded as an adapted forward 
estimator named P1-DIF. Thus, adaptation trials yielded the 
following adapted forward estimators: P1-DIF, P1-GTF, P2-
DIF, and P2-GTF. 

Treadmill Forward Estimation Trials: Six forward 
estimation trials were collected to assess the real-time speed 
estimation performance of adapted and non-adapted forward 
estimators. Only the forward estimation process was run. FE0, 
P1-DIF, and P1-GTF were evaluated on P1 in separate trials. 
FE0, P2-DIF, and P2-GTF were evaluated on P2 in separate 
trials. 

Overground Adaptation Trial: To evaluate the 
performance of our methods in a more realistic setting, one 
adaptation trial was conducted during overground (OVG) 
walking. Subjects were instructed to walk back and forth 
along a 5-meter path at their self-selected walking speed for a 
duration of two minutes. Real-time forward estimates were 
made with FE0. DI backward estimates were recorded for later 
use. Due to the lack of real-time GT backward estimates in the 
overground setting, the adaptation process for this adaptation 
trial was performed offline with COM speed labels. Offline 
adaptation yielded the following forward estimators: OVG-
DIF, and OVG-GTF. 

Overground Forward Estimation Trial: One overground 
forward estimation trial was collected to evaluate the 
performance of adapted and non-adapted forward estimators in 
an overground setting. Subjects were given identical walking 
instructions to the overground adaptation trial. Real-time 
forward estimates were made with FE0. The following forward 
estimators were evaluated on this trial in an offline manner: 
FE0, P1-DIF, P1-GTF, P2-DIF, P2-GTF, OVG-DIF, and OVG-
GTF. 

E. Statistical Measurements 
A repeated measures ANOVA was conducted to examine 

the impact of different forward estimators on the real-time 
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forward estimation error, which served as the dependent 
variable. In this analysis, the forward estimator functioned as 
the intra-subject factor, with multiple measurements taken for 
each subject across different conditions. Instances of 
significant differences were further explored using Tukey's 
Honesty Significant Difference test to conduct detailed 
comparisons between specific groups. 

Paired t-tests were used to compare the offline forward 
estimation error of each adapted forward estimator with the 
baseline during overground walking. The error served as the 
dependent variable in these analyses. 

III. RESULTS 
Improvements from the baseline (FE0) performance (0.104 

m/s MAE) were observed for all adapted forward estimators 
by the end of adaptation trials (Fig. 3).  Test errors rose 
sharply before settling to errors less than the baseline. P1-DIF, 
P1-GTF, P2-DIF, and P2-GTF achieved errors of 0.090 [0.023], 
0.078 [0.021], 0.088 [0.027], and 0.084 [0.022] m/s MAE, 
respectively. On P1 and P2, DI backward estimation had 
average errors of 0.071 [0.031] and 0.058 [0.021] m/s MAE, 
respectively. 

The real-time forward estimation performance of adapted 
forward estimators was compared to the baseline in Fig. 4 and 
5. On P1, the errors of the FE0, P1-DIF, and P1-GTF were 
0.094 [0.017], 0.099 [0.024], and 0.075 [0.026] m/s MAE, 

respectively. On P2, the errors for FE0, P2-DIF, and P2-GTF 
were 0.103 [0.033], 0.074 [0.023], and 0.074 [0.018] m/s 
MAE, respectively. For P2, both P2-DIF and P2-GTF achieved 
errors that were significantly lower than the baseline (p < 
0.05). 

Adapted and non-adapted forward estimators were 
evaluated offline on two minutes of overground walking. 
Offline forward estimation errors are shown in Fig. 6. Forward 
estimators adapted with the GT backward estimator (P1-GTF, 
P2-GTF, and OVG-GTF) achieved significantly lower errors 
(0.139 [0.039], 0.138 [0.028], and 0.126 [0.028] m/s MAE, 
respectively) compared to the baseline (0.158 [0.037] m/s 
MAE) (p < 0.05). Forward estimators adapted with the DI 
backward estimator (P1-DIF, P2-DIF, and OVG-DIF) yielded 
errors of 0.155 [0.038], 0.163 [0.045], and 0.199 [0.067] m/s 
MAE, respectively. 

Prosthesis ankle moment and knee power were compared to 
able-bodied (AB) biomechanics (N=22) (Fig. 7). For the 
shared speeds of 0.5, 0.6, 0.7, and 0.8 m/s, a linear fit of peaks 
was conducted between TF and AB ankle moment and knee 
power signals. Ankle moment peaks yielded 0.82 and 0.86 N-
m/kg/m/s rates for TF and AB subjects, respectively. The 
Pearson correlation coefficient between ankle moment peaks 
was 0.91. Knee power peaks yielded 2.2 and 1.2 N-m/kg/m/s 

 
Fig. 3. Evolution of mean absolute error (MAE) in walking speed estimation 
throughout the adaptation process. All errors plotted were obtained by 
evaluating the speed estimators on data labeled with ground truth speed, and 
this evaluation did not influence the adaptation process. The baseline forward 
estimator (FE0) was a pre-trained, user-independent Temporal Convolutional 
Network (TCN) model. During adaptation, every third prosthesis stride 
triggered the backward estimator (either Direct Integration, DI, or Ground 
Truth, GT) to label the previous three strides. These labeled strides were used 
to update a copy of FE0, producing an adapted forward estimator (AFE), 
which replaced FEn if it achieved a lower MAE. FEn is named according to 
the treadmill profile (P1 or P2) and the backward estimator used (e.g., P1-DIn 
for DI backward estimator on profile P1). The MAE of each FEn was 
computed and plotted against experiment progress for each combination of 
backward estimation method and treadmill speed profile. The backward 
estimation errors (DI or GT) are also plotted with red and blue dotted lines, 
respectively, to illustrate reference error levels. Data are averaged across 10 
subjects with unilateral transfemoral amputation (TF=10) (± 1 SD). The 
figure highlights the progressive reduction in MAE as the forward estimators 
adapt to self-labeled user-specific data. 
 

 
Fig. 4. Real-time forward estimation performance of baseline and fully-
adapted forward estimators (e.g., P1-DIF, P1-GTF, P2-DIF, P2-GTF) on their 
respective treadmill profiles (P1 or P2). The baseline forward estimator was a 
pre-trained, user-independent Temporal Convolutional Network model. 
Adapted forward estimators were created by updating FE0 with user-specific 
data labeled by backward estimators (either Direct Integration, DI, or Ground 
Truth, GT) during the adaptation process. Each estimator was evaluated 
using data labeled with ground truth speed for its respective treadmill profile. 
Bar plots show the mean absolute error (MAE) for both baseline and fully-
adapted estimators. Data are presented as averages across 10 subjects with 
unilateral transfemoral amputation (TF=10) (± 1 SD). Statistically significant 
differences (*p < 0.05) between estimators were determined by a repeated 
measures ANOVA. This figure highlights the performance improvements of 
the adapted estimators compared to the baseline estimator after completing 
the adaptation process. 
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rates for TF and AB subjects, respectively. The Pearson 
correlation coefficient between knee power peaks was also 
0.91. 

IV. DISCUSSION 
The primary goal of this study was to develop a continual 

learning algorithm for powered lower-limb prostheses that can 
iteratively improve the performance of forward estimators of 
speed for novel users. Significant algorithmic changes were 
made for this regression task compared to adaptation studies 
involving mode classification [42], [43]. Most notably, we 
added memory in the form of data bins to avoid catastrophic 
forgetting, noncausal filtering to smooth sequential backward 
estimates, and scaling of prosthetic assistance to accommodate 
changes in speed. 

Subjects underwent a series of adaptation trials during 

which baseline forward estimators were adapted to self-
labeled user-dependent data every three strides. We found that 
adapting at the start of trial, when a limited amount of user-
dependent data was available, caused overfitting. Data 
collected early in the trial contained a narrow distribution of 
speeds which improved the performance on validation data 
(i.e., 20% of binned data) but worsened the performance on 
test data (obtained from benchmark trials). To address this, 
techniques such as regularization and active learning [50] can 
mitigate overfitting in data-scarce scenarios by reducing 
model complexity, decreasing sensitivity to noisy data, and 
focusing adaptation on the most informative data points. 
Eventually, all adapted forward estimators achieved test errors 
that were less than the baseline. P1-GT passed this threshold 
after 35 sec, P2-GT after 21 sec, P1-DI after 58 sec, and P2-DI 
after 48 sec. Though, the inability of adapted forward 
estimators to converge to the same error as their respective 
backward estimators may indicate a limit in the improvement 
potential for our machine learning approach to forward 
estimation, given that the forward estimation problem is 
fundamentally harder than backward estimation as less 
information is available in real-time. In addition, the shorter 
adaptation times attained within the same profile (e.g., P1-GT 
vs. P1-DI) can be attributed to the greater accuracy of the GT 
backward estimator. The differences in adaptation times 
across profiles (e.g., P1-GT and P2-GT) were mainly due to 
speed profile design. In P1, the full speed range (0.3 to 0.9 
m/s) was not encountered until around 60 seconds, limiting 
quicker adaptation. In contrast, P2 encountered the full speed 

 
 
 

Fig. 5. Real-time forward estimation tracking of walking speed for baseline 
and adapted forward estimators compared to the ground truth treadmill 
speeds on two treadmill speed profiles, P1 (top) and P2 (bottom), for a 
representative subject (TF09). The baseline forward estimator (FE0) is a pre-
trained, user-independent Temporal Convolutional Network model, while the 
adapted forward estimators were created by updating FE0 with user-specific 
data labeled by backward estimators during the adaptation process. The 
figure shows how each estimator predicts walking speed in real time, 
illustrating the responsiveness of the models to changes in treadmill speed. 
The adapted forward estimators demonstrate improved tracking accuracy 
compared to the baseline estimator across different speed profiles. Results in 
this figure reflect the performance of a single representative subject, 
highlighting individual performance dynamics. Data across all subjects with 
unilateral transfemoral amputation (TF=10) are averaged and discussed in 
detail in Fig. 4. 

 
 

Fig. 6. Offline forward estimation performance of baseline and adapted 
forward estimators during overground walking. The baseline forward 
estimator (FE0) is a pre-trained, user-independent Temporal Convolutional 
Network model, while the adapted forward estimators were created by 
updating FE0 with user-specific data collected during treadmill walking and 
labeled by backward estimators (either Direct Integration, DI, or Ground 
Truth, GT). The figure shows the mean absolute error (MAE) of the baseline 
and adapted models when applied to overground walking data. Data are 
presented as averages across 10 subjects with unilateral transfemoral 
amputation (TF=10) (± 1 SD). Statistically significant differences (*p < 0.05) 
between the adapted estimators and the baseline were determined using 
multiple paired t-tests. This figure highlights how adaptation based on 
treadmill walking improves forward estimation performance during 
overground walking. 
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range within 40 seconds, enabling faster convergence. While 
quicker succession of speeds could lead to even faster 
convergence, it may not accurately reflect real-world walking 
conditions, which influenced our experimental design. 
Regardless, these results suggest that improvements in 
performance can be attained within a minute of walking given 
an accurate enough backward estimator. The adaptation times 
observed in our study align with those reported by Spanias et 
al. [43], who found substantial adaptation within a few 
minutes (220 steps), highlighting the feasibility of achieving 
meaningful adaptation within a similar time frame despite 
differences in the specific focus of adaptation. 

It is interesting to note that the thigh IMU sensor failed 
during one subject’s adaptation trial. Although baseline errors 
increased initially due to the corrupted sensor data (0.12 MAE 
m/s), the system was able to adapt and improve upon the 
baseline (0.10 MAE m/s). While unintended for this study, 
this accident demonstrated the adaptation system represents a 
potential solution to handle sensor dropout or corruption for 
real-time machine learning systems. 

Adapted and non-adapted forward estimators were 
evaluated in real-time on their respective treadmill profile 
during separate forward estimation trials. Real-time errors 
(Fig. 4) were not in-line with the final test errors achieved in 
adaptation trials (Fig. 3), but were comparable to speed 
estimation errors achieved by other studies involving TF 
subjects [31], [41], [47]. Specifically, P1-DIF produced a 
worse real-time error than the baseline (-5%) and P1-GTF 
produced a better real-time error than the baseline (20%). 
Subjects who exhibited worse errors than the baseline during 
forward estimation trials using P1-DIF also showed greater 
errors at the end of adaptation trials, while their backward 
estimation performance remained within the expected range. 
This suggests that the challenges likely arose during the 
adaptation process. Inconsistent or asymmetric walking 
patterns may have limited the effectiveness of adaptation, as 
successful adaptation requires a consistent and predictable gait 
pattern that the model can learn and adjust to. Additionally, 
poor initial speed estimations may have compounded the 

issue, creating a feedback loop where suboptimal prosthetic 
assistance leads to further gait inconsistencies, ultimately 
impairing the adaptation process. Most notably, P2-DIF (28%) 
and P2-GTF (28%) achieved real-time errors that were 1) 
significantly lower than the baseline and 2) not significantly 
different from each other. This suggests that adapting to more 
continuous speeds yield better real-time forward estimation 
performance. Interestingly, humans tend to increase and 
decrease speed much more frequently than they maintain 
steady-state walking [51], so this finding might be promising 
for real-world settings. Related adaptation work achieved 7% 
[43] and 45% [42] improvements in real-time classification 
accuracy. While not directly comparable, these percentage 
improvements highlight the potential benefit adaptation can 
have on real-time inference in prosthetic applications.  

Speed estimation studies with TF subjects using lower-limb 
prostheses have reported errors ranging from 0.067 to 0.10 m/s 
RMSE using machine learning methods [32] and kinematic 
modeling [14], [31]. A lower error of 0.036 m/s RMSE was 
achieved with able-bodied individuals using a knee-ankle 
prosthesis [33]. Foot-IMU-based direct integration methods, 
applied to able-bodied individuals (without a prosthesis), have 
reported errors ranging from 0.03 to 0.05 m/s RMSE [34], 
[36]. In comparison, our baseline and adapted (P2-DIF) 
forward estimators yielded real-time forward estimation errors 
of 0.103 and 0.074 m/s MAE, respectively, corresponding to 
0.129 and 0.088 m/s RMSE. It is important to note that real-
time estimation generally produces greater errors than offline 
implementations, as real-time constraints introduce additional 
variability, which can be further exacerbated in populations 
with lower-limb amputations. Additionally, estimating 
dynamic speeds is more challenging than estimating constant, 
steady-state speeds because dynamic conditions involve rapid 
changes and fluctuations that require the model to quickly 
adapt to varying inputs. Despite adapting with imperfect DI 
labels and evaluating solely on dynamic speed profiles, our 
approach achieved comparable performance, particularly with 
respect to the DEP 0.067 m/s RMSE reported by Bhakta et al. 
[32]. 

 
Fig. 7. Cross-subject average ankle moment and knee power from the prosthesis of individuals with transfemoral amputations (TF=10) and the intact limb of 
able-bodied individuals (AB=22) across speeds. The AB dataset did not contain treadmill walking at speeds below 0.5 m/s. TF biomechanics were taken from 
benchmark trials during which scaling of assistance was dictated by the ground truth treadmill speed. Prosthesis control parameters were linearly scaled based on 
speed. Specifically, joint stiffness was linearly scaled during ankle push-off and knee swing extension. The scaling equations were tuned to the preference. The 
TF biomechanics shown were computed using on-device sensors. 
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During overground walking, forward estimators adapted 
with GT labels yielded forward estimation errors that were 
significantly less than the baseline. This result indicates that, 
given an accurate enough backward estimator, treadmill or 
overground adaptation can benefit overground forward 
estimation. Forward estimators adapted with DI labels yielded 
errors that were not significantly different from the baseline. 
The DI backward estimator underperformed, possibly due to 
the high accelerations observed during overground walking 
trials, where subjects frequently started and stopped as they 
walked back and forth along a 5-meter path. The maximum 
accelerations observed during treadmill and overground 
walking were 0.1 and 0.9 m/s2, respectively. The average 
prosthesis stride durations during treadmill and overground 
walking were 1.78 [0.24] and 1.92 [0.13] sec, respectively. 
This meant that, in the worst case, intra-stride speed varied by 
0.18 m/s2 during treadmill walking and 1.73 m/s2 during 
overground walking, indicating that the accelerations 
experienced within one stride of overground walking were 
almost ten times greater than those experienced during 
treadmill walking. This poses an issue when the DI backward 
estimators assign the same walking speed label to every data 
point within one stride. The GT backward estimator had the 
advantage of assigning labels to individual data points that 
corresponded to the closest ground truth speed measurement. 
Future work should focus on developing continuous backward 
estimators that can keep pace with rapid intra-stride changes in 
walking speed or adapt only during moments of low 
acceleration. Direct integration and kinematic approaches that 
estimate only once per gait cycle are not only unpromising for 
forward estimation but also insufficient for backward labeling. 
This underscores the importance of machine learning 
approaches that estimate speed continuously in real time. The 
design of the overground walking trials was a limitation of this 
study because they lacked real-time adaptation and evaluation 
of forward estimators during overground walking. Future 
studies should adapt and evaluate forward estimators in real-
time during longer bouts of overground walking. 

The joint biomechanics shown in Fig. 7 illustrate the scaling 
effect of our prosthesis controller. By linearly scaling the 
stiffness impedance parameter during ankle push-off and knee 
swing based on speed we aimed to better assist subjects during 
variable-speed walking. A high correlation coefficient (0.91) 
was achieved in ankle moment and knee power peaks between 
TF and AB biomechanics. Although we scaled similarly to 
AB, the magnitudes of ankle moment and knee power were 
not comparable. Even though our system could predict 
biomimetic ankle moments, we were unable to fully deliver 
them at top speeds in a real-time system due to device 
limitations. Specifically, the ankle joint moment was capped 
to avoid belt skips within the belt-drive system. This was 
especially prevalent during ankle push-off when the 
ankle had to deliver large joint moments to propel the 
subject’s mass forward. The greater magnitudes of TF knee 
powers are in part due to user preference tuning. We 
hypothesize that subjects may have preferred a faster swinging 

knee to compensate for a lack of ankle push-off propulsion. 

V. CONCLUSION 
This study introduced a novel real-time continual learning 

approach for powered lower-limb prostheses that updated a 
deep-learning-based walking speed estimator with user-
dependent data, effectively personalizing the estimator to the 
user and improving estimation performance over time. 
Evaluated on ten individuals with transfemoral amputation 
during treadmill and overground walking, the proposed 
algorithm demonstrates significant improvements in walking 
speed estimation, with adapted estimators outperforming the 
baseline estimator after approximately 1 minute of walking. 
The results highlight the importance of accurate backward 
estimators in the adaptation process, the transferability of 
treadmill adaptation benefits to real-world walking conditions, 
and the effectiveness of the prosthesis controller in scaling 
assistance with speed estimates based on biomimetic trends. 
This study marks a significant advancement in developing 
self-learning prostheses that do not rely on pre-collected user-
specific data, yet quickly adapt after a short period of walking 
to deliver robust, biomechanically appropriate assistance, 
ultimately enhancing the quality of life for individuals with 
lower-limb amputations. 
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